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Abstract 

This paper presents a single Double-Ended Tuning Fork (DETF) MEMS resonator-based band-pass filter fabricated on a 

commercial standard CMOS technology. The accurate design of this resonator demonstrates the ability to perform filtering 

without the need of coupling multiple resonators. The main characteristic is to define the out-of-phase mode resonance frequency 

of the DETF smaller than the in-phase mode frequency. The electrical characterization shows that this stand-alone band-pass 

filter presents a 44.4MHz central frequency with a 0.6% bandwidth in air.   
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1. Introduction

Typical filter implementations are based on electrical [1] or mechanical [2, 3] coupling of two or more resonators

to provide the required band-pass for filter applications, which can decrease the fabrication process throughput. 

The main idea behind this work is to use a resonator that inherently presents two near frequency resonance modes

[4] in order to create the filter band-pass. 

Similar concept (and structure) was employed by Yan et al. but using phase inversion [5] to obtain that filter

shape. This technique, however, presents two important drawbacks: 1) a dual supply is required to obtain the phase 

inversion and 2) because the biasing of the electrodes, AC coupling (i.e. a capacitor) is required to isolate 

subsequent electronics from the typically high DC values required by MEMS structures. These coupling capacitors 

would load the resonator Q, reducing it. 

The approach used in this work is different: the DC voltage would be applied directly to the resonant structure 

and the filter shape would be obtained by combining two near resonance modes frequency responses, in particular 

the balanced (out-of-phase) and unbalanced (in-phase) lateral resonance modes of a single MEMS resonator. For 

this purpose, a double-ended tuning fork (DETF) resonator topology, shown in Fig.1(a), was chosen. Relevant 
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dimensions are: beam or tine length (L), Support length (Ls), decoupling area width (Wda), resonator width (W), 

support width (k) and distance between tines (2·d). 

Fig1(b) shows the electric equivalent circuit of the resonator in which each RLC branch models each resonance 

vibration mode. The inverter in one of the branches models the different sign phase shift between the resonance 

modes that was observed in experiments [6, 3]. Fig.1(c and d) show electrical simulations for two scenarios: a) The 

balanced or out-of-phase mode frequency (f2) is higher than the one of the unbalanced or in-phase (f1) and b) the 

opposite situation. It can be observed the shape of a bandpass filter on the second scenario (f2< f1). 

2. Resonator fabrication and description 

The used resonator is completely fabricated on a CMOS commercial technology, AMS 0.35µm CMOS 

technology, using the capacitor module composed by two polysilicon layers, and is released using a one-step 

maskless etching, according to the technique used in [7, 8]. Resonator dimensions are: L=8.7µm, W=470 nm, 

Wda=400 nm, Ls=400 nm and Ws=700 nm whereas the gap distance is set to 100nm. Fig.2 shows the SEM image of 

the released resonator and Fig.3 shows the FEM simulations of the structure that demonstrates that for the given 

resonator dimensions balanced resonance frequency is lower than the one of the unbalanced mode, and consequently 

the measured magnitude response shape is expected to be like Fig.1(d). The frequency difference between modes 

(in-phase and out-of-phase) and their order can be modulated as a function of the double-ended tuning fork tines 

separation (2d) [5] 
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(c) (d) 

Fig.1 (a) DETF resonator topology, relevant dimensions are shown. (b) Electrical equivalent model of the DETF resonator considering balanced  

(out-of-phase) (f2) and unbalanced (in-phase) (f1) lateral resonance modes. (c) Electrical model simulation with f1< f2. (d) Electrical model 

simulation with f2< f1 
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3.  Experimental results and discussion 

This MEMS filter is measured using a manual probe table for direct on-chip measurement and a network analyzer 

(Agilent E5100A), using the test setup depicted also in Fig.2.. Fig.4(a) shows the S21 frequency response of the 

DETF filter for different DC biasing voltages. Fig.4(b) shows the relative frequency response (subtracting the 

feedthough signal) to easily appreciate the band-pass filter shape. These measurements show (as predicted) a band-

pass like frequency response, similar to the electrical simulations. Although the stop-band attenuation is below 3dB, 

and therefore no bandpass can be defined, the present resonator demonstrates the feasibility of obtaining a band-pass 

filter using a single resonator and a single DC supply. In particular a band pass filter with central frequency of 

44MHz, 0.6% bandpass and 0.5dB ripple is demonstrated.  

Compared to other reported works [4, 5, 3], the presented CMOS-MEMS resonator gives similar performance but 

provides the benefit of monolithical integration with CMOS, enhancing the possibilities for RF-MEMS in filtering 

applications. We expect that using CMOS circuitry to prevent Q loading [9] and reducing the transducing gap up to 

40 nm [8] will enhance the stop band attenuation providing a better filter performance than the state-of-the-art using 

mechanical coupling [3]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 SEM images of the released DETF resonator. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: FEM mechanical simulations (using Coventor) of the two first lateral modes. (a) in phase and (b) out of phase 
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(a) (b) 

Fig. 3: (a) Magnitude frequency response measurement of the DETF resonator with different applied DC voltage values. (b) Relative magnitude 

and phase variations for VDC=27V. 

4. Conclusions

In this paper a double-ended-tuning-fork electrostatically excited and monolithically integrated in a standard

CMOS technology is presented. The convenient election of resonance frequencies for the in-phase (larger 

frequency) and out-of-phase (smaller frequency) lateral resonant modes and the possibility to use two-port readout, 

provides a direct band-pass filter response. Even though the measured performance of the shown resonator is not as 

good as desired for a standard band-pass filter, it opens new perspectives to obtain filters using smaller devices. 

Additionally, we expect to increase its performance using the benefits of the CMOS technology used: implementing 

on-chip amplification circuitry and reducing the gap from 100nm to 40nm. 
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